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Summary
The Harmonoise reference model has been developed in order to predict long-term average sound levels in road
and railway situations that are geometrically relatively simple but physically complex. The present paper de-
scribes all steps of calculations with this powerful model which includes several advanced numerical propagation
methods to calculate the coupled effects of atmosphere, ground surface and obstacles on sound waves. The ref-
erence model employs a statistical description of the atmosphere, based on local meteorological data, as well
as various impedance models for ground surfaces and other absorbing surfaces. Validations against in situ long-
term measurements have been achieved in several sites; agreement between reference model and experimental
results ranges from excellent in flat terrain situations down to fairly good in more complex configurations (hilly,
viaduct).

PACS no. 43.28.Js, 43.28.Fp, 43.50.Vt

1. Introduction

Outdoor sound propagation under complex environment
has been widely studied during the 30 past years [1, 2, 3]
and the need for improving predicting methods is still a
topical domain when computational costs are constantly
decreasing. In this perspective new hybrid approaches
have been proposed recently [4, 5]. The Harmonoise refer-
ence model is concerned with this problematics and con-
sists of a collection of numerical codes which can be
used to calculate accurate ‘reference solutions’ for situ-
ations that are geometrically relatively simple but physi-
cally complex. A typical example is a situation with non-
linear wind speed profiles near a noise barrier. The ‘ref-
erence solutions’ may be used to assess the accuracy of
the Harmonoise engineering model, but may also be used
for other purposes, such as parameter studies of complex
atmospheric effects on sound waves.

The reference model is suited for situations with a long
road or railway with a noise barrier on one or both sides of
the sound sources. Sound propagation around the vertical
ends of the barriers (horizontal diffraction) is ignored. The
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model employs various numerical propagation methods to
calculate effects of the atmosphere, ground surface and
obstacles on sound waves: the Parabolic Equation (PE),
the Boundary Element Method (BEM) and the straight-
ray model (RAY).

The present paper globally describes all elements of the
reference model developed within the activity of Work
Package 2 of the Harmonoise project [5, 6, 7, 8, 9, 10, 11],
whereas the source description of trains and road vehicles
was the aim of Work Packages 1.1 and 1.2 [12, 13]. The
model is finally validated against long-term in situ mea-
surements [14] and then used as a reference tool for the
development and fine tuning of the engineering model of
Work Package 3 [15].

2. Structure of the model

The objective of the reference model is the calculation
of the long-term average sound levels Lden (day-evening-
night) and Lnight which are the two noise indicators that
should be applied in the framework of in the European Di-
rective 2002/49/EC relating to the assessment and man-
agement of environmental noise (25 June 2002). In sec-
tion 2.1 formulas are given for a basic element of the calcu-
lation: the summation of sound levels from point sources
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Figure 1. Geometry with a point source on the y-axis and a re-
ceiver at position (x, 0) on the x-axis.

moving along a line [6]. section 2.2 describes basic con-
cepts of the reference model. section 2.3 specifies all steps
of a calculation of long-term average sound levels with the
reference model.

2.1. Basic formulas

In this section formulas are given for the equivalent sound
level generated by incoherent point sources moving with
constant speed along a line. The equi-angular distribution
of incoherent point sources over the line is referred to as
an incoherent line source.

The geometry is shown in Figure 1. A rectangular xy
coordinate system in the horizontal plane is used. Point
sources move along the y-axis, from y = y1 to y = y2. The
receiver is located at position (x, 0) on the x-axis. Angle φ
runs from φ1 = arctan(y1/x) to φ2 = arctan(y2/x).

The average number of point sources per unit length is
Q/v, where Q is the number of point sources passing per
unit time and v is the speed of the point sources. The sound
power level of a point source is written as

LW (φ) = LW,0 + ΔLW (φ), (1)

where LW,0 is a constant and ΔLW is a function of an-
gle φ, which represents horizontal directivity of the point
source.

The instantaneous sound level generated by an individ-
ual point source passing from y1 to y2 varies in time. The
equivalent sound level generated by the constant flow of
point sources can be expressed as [6]:

Leq = LW,0 + 10 log
#
Q/v

' − Aline, (2)

where Aline is called line-source attenuation and ‘log’
stands for logarithm to the base 10. The sum LW,0 +
10 log(Q/v) is called sound power level per unit length.

For numerical calculation of Aline, the line segment from
y1 to y2 is divided into a number of smaller segments. As
shown in Figure 2, segment j has length δyj , and corre-
sponds to angular interval δφj . Segment j is represented

Figure 2. Point source j represents linear interval δyj and angular
interval δφj .

by a (fixed) point source j at the center of the segment.
Line-source attenuation Aline is then given by:

Aline = −10 log
$0

j

10[ΔLW,j−10 log(4πx)−Aexcess,j]/10δφj

(
, (3)

where j runs over all segments between y = y1 and y = y2,
and x is the normal distance between the line source and
the receiver (Figure 1). Quantity Aexcess,j is the excess at-
tenuation for propagation from point source j to the re-
ceiver, and represents effects of ground, meteorology, bar-
riers and air absorption. One may note that this excess at-
tenuation is defined as free field sound pressure level mi-
nus actual sound pressure level.

In exceptional cases, distance x is zero (for example, if
the receiver is located on the y axis at y > y2) and the
above expression for Aline fails. In these cases the follow-
ing expression is used [16]:

Aline = −10 log
$0

j

10[ΔLW,j−10 log(4πr2
j )−Aexcess,j]/10δyj

(
, (4)

where rj is the distance from point source j to the receiver.
In the limit δyj → 0 this expression is identical to equa-
tion (3).

To keep the number of numerical calculations as small
as possible, it is important to use a distribution of point
sources in Figure 2 for which the point sources have nearly
equal contributions to the sound level at the receiver. In a
free-field situation (homogeneous atmosphere, no air ab-
sorption, no ground, no obstacles), the contributions are
equal for an equi-angular distribution, i.e. a distribution
with a constant angular interval δφj . The equi-angular dis-
tribution is also used for non-free-field situations. For the
angular interval values of typically 5 to 20 degrees are used
depending on the degree of accuracy required.

2.2. Basic concepts of the reference model

2.2.1. Main assumptions
It is assumed that vehicles move along straight lines rep-
resenting roads (or railways). Curved roads (or railway
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tracks) may be handled as a series of straight segments.
There may be noise barriers on either side of the sound
sources. The model takes into account reflection on the
barriers and diffraction by their top edges. Situations with
significant side effects of finite barrier are excluded by ig-
noring diffraction by their vertical edges

Each vehicle is represented by a number of incoherent
point sources. Each point source moves along with the ve-
hicle and leads to an incoherent line source. Consequently,
a flow of vehicles on a road is modelled by a number of
incoherent line sources at different heights and positions.
For the calculation of sound levels, each incoherent line
source is represented by a number of fixed point sources,
as described in section 2.1.

2.2.2. Propagation planes

For each fixed point source, a number of propagation
planes are considered (Figure 3) [10]. A propagation plane
is a vertical plane that contains all sound rays from the
source to the receiver with a fixed number of ‘zigzag’ re-
flections (and diffractions) between the two barriers shown
in Figure 3. One neglects the fact that not all sound rays
with a fixed number of zigzag reflections are exactly con-
fined to a propagation plane, since diffracted rays follow
Keller’s law.

Propagation plane 1 contains all rays without reflec-
tions and diffractions by barrier 2 (Figure 3); Propagation
plane 2 contains all rays reflected and diffracted by bar-
rier 2. Propagation plane 3 contains all rays reflected and
diffracted first by barrier 1 and next by barrier 2. And so
on for the next propagation planes.

For a road without barriers, or a road with barrier 1 but
without barrier 2, only propagation plane 1 is considered.
For a road with barrier 2 but without barrier 1, propagation
planes 1 and 2 are considered. For a road with both barrier
1 and barrier 2, the number of propagation planes taken
into account depends on the propagation model (RAY,
BEM, or PE) that is used in the source region.

If propagation model RAY or PE is used, calcula-
tion of separate contributions from propagation planes is
straightforward. In this case, contributions from propaga-
tion planes 1, 2 and 3 are taken into account and contribu-
tions from propagation planes 4, 5,. . . are neglected which
is consistent with what has been observed in most cases
[10, 17].

If propagation model BEM is used, however, contribu-
tions from different propagation planes cannot be sepa-
rated by means of a single BEM calculation. Therefore,
two BEM calculations are performed:
i) a calculation for the situation with barrier 1 but without

barrier 2,
ii) a calculation for the situation with both barrier 1 and

barrier 2.
Calculation i) yields the contribution from propagation
plane 1. The difference of calculation ii) and calculation i)
yields an approximation of the contribution from all other
propagation planes. Thus, contributions from all propaga-
tion planes are taken into account in an approximate way.

Figure 3. Top view of propagation planes 1, 2, and 3 for a point
source in a situation with barriers on either side of the road. Each
barrier reflection corresponds to a kink in a propagation plane.

d2
d2

d3 d3

Figure 4. General illustration of the two-dimensional approxima-
tion. A situation with barriers at an arbitrary angle to the source
receiver line (left) is replaced by a situation with barriers perpen-
dicular to the source receiver line (right).

Coherence loss due to the turbulent state of the atmosphere
[10] between propagation planes 2, 3, etc. cannot be ac-
counted for in this case.

2.2.3. Two-dimensional approximation

For the calculation of excess attenuation, two-dimensional
sound propagation models are used. Therefore, the two-
dimensional approximation is used, for each propagation
plane [8] except when the three-dimensional RAY model
is used. This approximation is illustrated in Figure 4. Bar-
riers are rotated such that they become perpendicular to
the source-receiver line. After rotation, a two-dimensional
propagation model is applied in the vertical plane through
the source and the receiver to calculate excess attenuation.
The two-dimensional approximation for propagation plane
2 is illustrated in Figure 5. The error introduced by this
barrier rotation has been discussed in reference [10] and
has been found to be less than 1 dB(A) in a complex case
such as a train over a ballast-like boundary close to a noise
barrier.

2.2.4. Source region

For the calculation of excess attenuation, a propagation
plane is divided into two regions: a source region and
the region outside the source region [10] (Figure 6). The
source region extends to typically 2 m behind the barrier
between the source and the receiver. If there is no barrier,
the distinction between the two regions can be ignored.
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Figure 5. Illustration of the two-dimensional approximation for
propagation plane 2. Distances d1, d2, and d3 in the original ge-
ometry (left) are used in the approximate geometry (right).

Figure 6. A propagation plane is divided into two regions: a
source region (dark grey) and the region outside the source re-
gion (light grey).

Depending on the situation, different propagation models
may be used in the source region and the region outside
the source region (more detailed description in section 4).

2.3. Stepwise description of a reference model calcu-
lation

The stepwise description of the reference model is as fol-
lows:

Step 1: Source description. Sources are specified in
terms of vehicle types, numbers of vehicles per hour (traf-
fic flows), and vehicle speeds. Each vehicle is represented
by a set of point sources at different heights. Consequently,
a traffic flow is represented by a set of incoherent line
sources. Each incoherent line source is represented by a
set of (fixed) point sources.

Step 2: Atmosphere. A set of logarithmic-linear (called
‘loglin’) sound speed profiles is specified (m = 1, 2, . . . ,
M) [18, 19]:

cm(z) = c0 + am ln
#
1 + z/z0

'
+ bmz, (5)

where cm is the (effective) sound speed as a function of
height z, c0 = 340 m/s is a constant sound speed, ‘ln’
stands for natural logarithm, z0 is the roughness length
of the ground surface, and am and bm are parameters that
vary with index m. The number of profiles M is typi-
cally 25. Typical values of the parameters are z0 = 0.1 m,
am = −1.0, −0.4, 0, 0.4, 1.0 m/s and bm = −0.12, −0.04,
0, 0.04, 0.12 1/s (five values of am and five values of bm
yield 25 sound speed profiles). The 25 profiles include

both downward-refracting profiles and upward-refracting
profiles. A more detailed description of equation (5) is
given in section 4.4.1. Long-term average sound levels are
calculated by weighted averaging of levels for the 25 pro-
files. The statistical weights of the profiles are denoted
as wm, with

1
m wm = 1. The statistical weights depend

on local climate, propagation direction and period of the
day. For a Lden assessment, each period (day, evening and
night) has its own weights. Near obstacles such as noise
barriers, range-dependent sound speed profiles are deter-
mined when necessary, as described in section 4.4.3.

Step 3: Ground and absorbing surfaces. Acoustic im-
pedances of ground surfaces and other absorbing surfaces
are specified. Various impedance models are available to
calculate the impedance from a few empirical parameters,
such as the air flow resistivity of the surface material. The
topography of the ground surface is specified. It is as-
sumed that the road surface is flat (apart from noise bar-
riers). The ground surface outside the source region may
contain gentle hills.

Step 4: Propagation calculations. Using a (possibly
hybrid) propagation model, excess attenuations
Aexcess,m,j,i,p,n are calculated for
• all sound speed profiles m = 1, 2, . . . ,M ,
• all point sources j = 1, 2, . . .,
• all incoherent line sources i = 1, 2, . . .,
• all propagation planes p = 1, 2, 3,
• all 1/3-octave bands n = 14, 15, . . . (with n defined be-

low).
One-third octave band levels are derived from results for
four frequencies per band:

f = fc10−3/80, fc10−1/80,

fc101/80, and fc103/80,

where fc = 10n/10 is the mid-frequency of the band, with
n = 14 for 25 Hz, n = 15 for 31.5 Hz, etc. Computer time
and memory of the propagation models increase sharply
with frequency, so it is often necessary to use an upper fre-
quency band of 2.5 kHz, for example, and neglect contri-
butions from higher bands. The choice of four frequencies
per third-octave band is a result of preliminary simulations
showing that this is a good compromise between calcula-
tion times and a global accuracy of 0.5 dB(A) compared to
a narrow band result.

The propagation calculations are performed for a non-
turbulent atmosphere. Effects of atmospheric turbulence
are taken into account afterwards by setting an upper limit
of 15 dB to the excess attenuation without including the at-
tenuation due to air absorption. This value is coherent with
measurements results presented in reference [20]. This ap-
proximate approach accounts for turbulent scattering of
sound waves into a shadow region. More accurate values
of the upper limit for specific situations may be determined
by performing sound propagation calculations for a set of
random simulations of the turbulent atmosphere, using ap-
propriate values of turbulence parameters [10, 21, 22]. In
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particular in a shadow region behind a high noise barrier,
excess attenuation higher than 15 dB is possible.

The propagation calculations are performed for a non-
dissipative atmosphere. Air absorption of sound energy of
pure tones is taken into account afterwards by adding a
term αr to the excess attenuation, where r is the horizon-
tal propagation distance and α is the absorption coefficient
(for 1/3 octave bands, see Sec. 4.4.5). The absorption co-
efficient is calculated with ISO 9613-1 [23], using appro-
priate average values of the temperature and the relative
humidity.

Step 5: Long-term average sound levels. Long-term
average sound levels are calculated by successive summa-
tion over sound speed profiles, point sources, incoherent
line sources, and propagation planes.

First, excess attenuation is averaged over sound speed
profiles by weighted summation with statistical weights
wm (m = 1, . . . ,M):

Aexcess,i,j,p,n = −10 log
$0

m

wm10−Aexcess,i,j,p,m,n/10
(
. (6)

From point-source excess attenuations Aexcess,i,j,p,n, line-
source attenuation Aline,i,p,n is calculated with equation (3),
or, if necessary, with equation (4). Corresponding equiva-
lent sound levels Leq,i,p,n are calculated with equation (2),
taking into account the appropriate sound power levels,
traffic flows, and speeds. Next, equivalent levels Leq are
calculated by summation over propagation planes, inco-
herent line sources, and 1/3-octave bands:

Leq = 10 log
$0

n

0
i

0
p

10Leq,i,p,n/10
(
. (7)

Finally, equivalent levels for the periods ‘day’, ‘evening’,
and ‘night’, denoted as Ld, Le, and Ln, respectively, are
combined into a day-evening-night level:

Lden = 10 log
!12

24
10Ld/10 +

4
24

10(Le+5)/10

+
8

24
10(Ln+10)/10

%
. (8)

The day period is 12 hours, the evening period is 4 hours
and the night period is 8 hours. The start of the day (and
consequently the start of the evening and the start of the
night) can be chosen by each EU member State; the default
values for the day, evening and night period are 07.00 to
19.00, 19.00 to 23.00 and 23.00 to 07.00, respectively. For
the evening period there is a 5 dB ‘penalty’ and for the
night period there is a 10 dB ‘penalty’.

Day level Ld, evening level Le, and night level Ln differ
because of:
• differences in sound emission, due to differences in traf-

fic intensity and speed,
• differences in sound propagation, due to differences in

meteorological conditions.

Figure 7. Angles φ and θ characterize the direction of sound
emission of a point source on an incoherent line source directed
along the (horizontal) y-axis.

The sound power spectra in equation (2) are A-weighted,
so the resulting levels are also A-weighted.

Sound level contributions from different propagation
planes are summed incoherently, while contributions from
sound rays within a propagation plane are summed coher-
ently. If necessary, one may use partial coherent summa-
tion depending on the turbulent state of the atmosphere
[10], if the required turbulence parameters are known.

3. Sound emission

As described in section 2.2, each vehicle is represented
by a number of incoherent point sources. In principle, the
sound power spectrum LW of each point source covers
the frequency range from 25 Hz to 5 kHz. In practice, it
may be necessary to neglect contributions from the high-
est frequency bands, due to limitations of the propagation
models.

The sound power spectrum LW of a point source may
depend on emission direction (see section 2.1). Horizontal
and vertical directivity are distinguished. Horizontal direc-
tivity corresponds to angle φ and vertical directivity cor-
responds to angle θ (Figure 7). Horizontal directivity is
taken into account by using different sound power spec-
tra for different angles of propagation. Vertical directiv-
ity should be taken into account in the propagation model.
Most propagation models assume a monopole point source
(and thus ignore directivity), but a directional source can
in principle always be represented by a set of monopole
sources with fixed phase relations [10].

4. Sound propagation

4.1. Description of the sound propagation models

This section presents brief descriptions of the main propa-
gation models: several PE models, RAY and BEM. Other
methods such as the Linearized Euler model (LE), the
Meteo-Boundary Element Method (meteo-BEM), the Fast
Field Program (FFP) and the curved-ray model with lin-
earized sound speed profile (curved-RAY) have also been
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Figure 8. PE models assume that the sound field is independent
of the azimuthal angle φ, so calculations are performed in two
dimensions in the vertical plane through the source and the re-
ceiver.

investigated; they are not presented here but more details
may be found elsewhere [7, 10].

CNPE
The Crank–Nicholson Parabolic Equation (CNPE) model
yields a numerical solution of a PE for sound propagation
[24, 25, 26]. The PE follows from the Helmholtz equa-
tion, i.e. the wave equation in the frequency domain, by
considering one-way sound propagation from the source to
the receiver (backscattering is neglected). The PE model is
a two-dimensional model, based on the axisymmetric ap-
proximation illustrated in Figure 8. The calculation is per-
formed on a rectangular grid in the vertical plane through
the source and the receiver (Figure 9a). CNPE gives accu-
rate results for sound waves travelling at elevation angles
of up to about 30◦.

The Helmholtz equation in the rz plane is

∂2q

∂r2
+

∂2q

∂z2
+ k2q = 0, (9)

where q = p
√
r, p = p(r, z) the (complex) sound pressure

and k = ω/c the wave number, with angular frequency ω
and (effective) sound speed c = c(r, z). The corresponding
PE is

∂ψ

∂r
= Qψ, (10)

where variable p has been replaced by variable ψ =
p
√
r exp(−ik0r), with constant wavenumber k0, and Q is

a differential operator that contains the second vertical
derivative ∂2/∂z2.

A calculation with the CNPE model is basically a finite-
difference integration of the sound field in positive r direc-
tion, based on equation (10). The calculation starts at the
source at r = 0, with a Gaussian starting field p(r = 0, z)
that represents a (monopole) point source (except if RAY
or BEM is used in the source region as pointed out in sec-
tion 4.3). The grid spacing is of the order of one tenth of
a wavelength, both in horizontal and in vertical direction.
At the top of the grid an artificial sound-absorbing layer is
used to eliminate spurious reflections.

(a) (b)

Figure 9. Rectangular grid in the rz plane (a); GTPE grid with
terrain-following coordinates (b).

(a) (b)

Figure 10. Illustration of the Kirchhoff approximation: (a) for
propagation over a rectangular obstacle, (b) for reflection from a
rectangular obstacle.

The effect of atmospheric refraction is taken into ac-
count by the effective sound speed approximation [26].
The effective sound speed is the sum of the adiabatic
sound speed, which is a function of the temperature, and
the horizontal wind speed component in the direction of
sound propagation (see hereafter section 4.3). The effec-
tive sound speed is specified at each grid point, so height
and range dependence of the effective sound speed is taken
into account. At some places in this paper, the effective
sound speed is referred to simply as the sound speed.

In situations with a flat ground surface without obsta-
cles, the effective sound speed is a function of height only,
and loglin profiles (2.5) are used. In situations with obsta-
cles or hills, the effective sound speed varies with height
and range, and a CFD (computational fluid dynamics) cal-
culation of flow over an obstacle may be necessary (sound
propagation over hills is calculated with GTPE).

At the ground surface, an impedance boundary condi-
tion is used. The ground impedance as a function of fre-
quency is calculated from a few empirical parameters (pre-
sented hereafter in section 4.4), such as the air flow resis-
tivity of the ground.

A rectangular obstacle on the ground surface can be
taken into account with PE through the Kirchhoff ap-
proximation [27] whose accuracy has already been dis-
cussed elsewhere [17]. For propagation over an obstacle
this means that the sound pressure at the back surface of
the obstacle is set equal to zero (Figure 10a). For reflec-
tion from an obstacle this means that the sound pressure
above the reflecting surface is set equal to zero upon re-
flection (Figure 10b). The sound-absorbing properties of
the surface of the obstacle are ignored in the first case (Fig-
ure 10a), but may be taken into account approximately in
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Figure 11. Example of a sound ray emitted by a source between
two noise barriers. The ray has a reflection at the left barrier and
a diffraction at the right barrier.

the second case (Figure 10b) by including a constant (real)
reflection factor in the amplitude upon reflection.

GFPE
The Green’s function Parabolic Equation model [26, 28,
29] is in many ways similar to the CNPE model. A major
difference is that with GFPE larger range steps are possible
than with CNPE: the horizontal grid spacing with GFPE
can be as large as 5 to 50 wavelengths, rather than one
tenth of a wavelength with CNPE. Another advantage of
GFPE is that accurate results can be obtained up to higher
elevation angles than with CNPE, provided an appropriate
higher-order starting field is used [26]. With a fourth-order
starting field accurate results up to 60◦ are obtained. A pre-
sentation on how the GFPE is solved numerically can be
found in references [29, 30].

GTPE
The Generalized Terrain Parabolic Equation (GTPE)
model is a generalization of the CNPE model for sound
propagation over a ground surface with smooth hills [26,
31]. Terrain-following coordinates are used (Figure 9b)
rather than the rectangular grid shown in Figure 9a. GTPE
gives accurate results for smooth hills with local slopes
that do not exceed about 30◦.

RAY
The ray model (RAY) used for the reference model is
based on the theory of geometrical acoustics, and is
described in reference [32]. Sound propagation from a
(monopole) point source to a receiver is calculated by
summation of contributions from sound rays. A ray con-
sists of straight segments between reflection points and
diffraction points. Reflection occurs at plane surfaces and
diffraction occurs at wedges. An example is shown in Fig-
ure 11.

The (complex) sound pressure contribution of a sound
ray is of the form:

p = QD exp
#
ikR)/R, (11)

where k is the wave number, R is the ray path length, Q is
a product of spherical-wave reflection coefficients, and D

Figure 12. The ray model works for double diffraction at the top
of a wide barrier if the top surface is rigid, but not if the top
surface is absorbing.

Figure 13. General geometry for BEM with a source, a receiver,
and a scattering volume bounded by surface S and outward nor-
mal 5n.

is a product of spherical-wave diffraction coefficients. The
spherical-wave diffraction coefficient includes the option
to model diffraction by an absorbing wedge, i.e. a wedge
that consists of two finite-impedance surfaces. This ap-
proach works for diffraction by a single absorbing wedge,
but gives inaccurate results for double diffraction by the
top of a wide barrier (Figure 12). In the latter case, BEM
(or PE) should be used rather than RAY. In cases with
complex barrier shapes, BEM should be used.

In principle, the ray model is based on a high-frequency
approximation. This means that all dimensions should be
large compared to the wavelength. In many situations,
however, the ray model works well down to frequencies
where this condition is not fulfilled.

BEM
The BEM [7, 33, 34, 35] is based on the Kirchhoff-
Helmholtz integral equation

C(5r)p(5r) = 4πpi(5r) −
��

S

�
G(5r, 5r0)

∂

∂n
p(5r0) (12)

− p(5r0)
∂

∂n
G(5r, 5r0)

�
d5r0

for complex sound pressure p(5r) at receiver position 5r,
in the situation shown in Figure 13 with a monopole
point source and an arbitrarily shaped scattering volume
bounded by surface S. Green’s function G(5r, 5r0) is the
free field at position 5r0 due to a point source at posi-
tion 5r, pi(5r) is the free field generated by the source, and
∂p/∂n ≡ (�p)5n is the derivative of p in the direction of
normal vector 5n. The second term on the right-hand side
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represents the field due to the scattering volume. C is a ge-
ometrical coefficient that depends on position 5r; C is equal
to 2π if 5r is on the surface S (not at a sharp corner) and
equal to 4π if 5r is not on the surface. The reference model
employs BEM in two dimensions (2D) since 2D and 3D
calculations give very similar results in terms of excess at-
tenuation [36]; therefore the surface integral in equation
(12) becomes a line integral, and the Green’s function is:

G(5r, 5r0) = iπH (1)
0

#
k|5r − 5r0|

'
, (13)

where H
(1)
0 is the Hankel function of the first kind and

order zero. Equation (13) represents the field of a point
source in 2D, corresponding to a coherent line source in
3D. For a point source above a finite-impedance ground
surface, one may use a half-space Green’s function, con-
sisting of the direct term (4.1.5) plus an image term that
accounts for the ground reflection [7].

Since equation (12) contains the unknown sound pres-
sure p(5r) on the left-hand side and the right-hand-side, two
computational steps are required. First equation (12) is ap-
plied to positions 5r on a fine grid that covers S, with a dis-
tance between neighbouring grid points of the order of one
tenth of a wavelength. This yields a set of linear equations
for the sound pressures at all grid points, which is solved
numerically. In the second step these sound pressures are
used in the right-hand-side of equation (12) to calculate
the sound pressure at an arbitrary receiver position 5r.

If S is a rigid surface, the normal derivative of the sound
pressure vanishes on S, which implies that ∂p(5r0)/∂n in
the integrand of the Kirchhoff-Helmholtz integral equa-
tion vanishes. If the impedance of S is finite, the following
boundary condition is used:

∂p

∂n
= −ikβp, (14)

where β is the normalized admittance of the surface (nor-
malized by the admittance of air).

A general problem with BEM is the so-called non-
uniqueness problem [33]: at certain frequencies, corre-
sponding to internal resonances of the scattering volume,
inaccurate results are obtained. This problem is solved by
including a number of points inside the scattering volume
where the field is forced to be zero.

4.2. Benchmark calculations with sound propaga-
tion models

4.2.1. Definition of benchmark cases
An extensive benchmark calculations work has been car-
ried out in order to select the different propagation meth-
ods suited for an efficient use in the reference model. Nine
families of models have been tested and compared (when
possible according to the limits of each of them): LE,
BEM, Meteo-BEM, CNPE, GFPE, GTPE, FFP, RAY and
curved-RAY.

A set of cases have been tested using typical values for
propagation distances (20, 200 and 2000 m), source height
(0.05, 0.5 and 5 m), receiver height (1.5 and 4 m), ground

or material characteristics (rigid, grassland, porous asphalt
and porous concrete), meteorological profiles (8 types),
impedance discontinuity geometry (4 cases), barrier ge-
ometry (8 cases) and terrain configuration (4 cases). A to-
tal of 313 cases has been thus investigated on a wide range
of frequencies (24 bands, with mid-frequencies between
25 Hz and 5 kHz)

4.2.2. Analysis and conclusions

In many benchmark cases, two or more basic models
agree, giving a reasonable reference for the ‘exact’ solu-
tion. We give here an overall indication of the performance
of the models in the benchmark calculations. Three prop-
erties are evaluated: accuracy, applicability, and computa-
tional effort. Accuracy is based on deviation from the ‘ex-
act’ solution. Applicability refers to limitations of the set
of situations the model can be applied to. Computational
effort refers to computing times and memory.

Concerning the LE model, the results are accurate in
most cases, although there are some deviations near inter-
ference minima for impedance ground. With very recent
improvements to LE model, the computational cost is not
a limiting factor anymore and in principle this approach
has no limitations in applicability. But at the time of the
simulations and the choices of algorithms (2002), the in-
tegration of an impedance ground in the LE model showed
very significant additional computing time and memory.

For the BEM, the results are also accurate in most cases.
Attention has to be paid to the mesh size. The model is lim-
ited to a non-refracting atmosphere but can handle com-
plex geometrical configurations. The computational effort
is large (only 2D model investigated here).

The results of Meteo-BEM are accurate in many cases,
but deviate from the ‘exact’ solution in some cases. The
model is presently limited to linear profiles. The computa-
tional effort is large.

CNPE and GFPE methods show accurate results in
many configurations. In some cases of upward refraction,
CNPE results are inaccurate at high frequency. The models
are limited to axisymmetric cases with a flat ground and
maximum propagation angles between typically 35 and 70
degrees. Rectangular obstacles can be taken into account
through the Kirchhoff approximation. The computational
effort is large.

The GTPE results agree with results of GFPE with the
conformal mapping approach [26]. Therefore the results
are considered accurate. The model can handle arbitrary
terrain profiles with maximum elevation angles of about
30 degrees. The model has the same limitations as the
CNPE model with respect to axial symmetry and propa-
gation angles. The computational effort is large.

For the FFP, the results are accurate in many cases, al-
though there are some deviations from the ‘exact’ solution,
in particular at high frequency. The model is limited to ax-
isymmetric situations with a layered atmosphere and a flat
homogeneous ground. The computational effort is large.

The RAY model is accurate in many cases, such as cases
with a screen on a ground surface. The model is limited to
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a non-refracting atmosphere and obstacles with flat sur-
faces. Dimensions of obstacles and distances to diffraction
edges should be larger than the wavelength. The computa-
tional effort is small.

Concerning the curved-ray model, the results agree
with the ‘exact’ solution in some cases, but show large
deviations in other cases. Applicability of the model is
the same as for RAY, except for the non-refracting atmo-
sphere. The computational effort is small.

Hybrid models as RAY+CNPE and BEM+CNPE
agree with other models in cases investigated. However a
disadvantage of the hybrid models is that refraction in the
source region is neglected.

4.3. Selection of propagation models

From the previous conclusions, three types of propagation
methods are finally used in the reference model [7]:
• the Parabolic Equation methods: CNPE, GFPE, and

GTPE,
• the straight-ray method,
• the Boundary Element Method.
One may note that the LE model is excluded from further
consideration mainly because of its high computational
demand.

In the source region, PE, RAY, or BEM is used. How-
ever, atmospheric refraction is taken into account by PE
but not by RAY and BEM. Therefore, PE is applied in
the source region if possible [10]. In the region outside
the source region, PE is used. PE cannot be used for com-
plex situations (for example, situations with tilted barri-
ers or barriers with a complex shape) and for situations
with sound waves propagating at large elevation angles.
PE can handle screening and reflection by simple rectan-
gular noise barriers through the Kirchhoff approximation.
The discontinuous change of effective sound speed upon
reflection may be taken into account.

If PE cannot be applied and if refraction may be ne-
glected, RAY or BEM is used. BEM can handle arbitrary
complex geometries, but is restricted to two-dimensional
modelling due to computational limitations. RAY is a
three-dimensional model (so the two-dimensional approx-
imation mentioned in section 2 is not applied) but is re-
stricted to relatively simple geometries.

The choice between PE and RAY or BEM corresponds
to a choice between accurate modelling of atmospheric
refraction and accurate modelling of a complex geome-
try. Both options imply an approximation: either the at-
mosphere in the source region is approximated by a non-
refracting atmosphere, or the complex geometry is approx-
imated by a simpler geometry. Which option is best de-
pends on the situation.

In the region outside the source region, a PE model is
used. For a flat ground surface, the CNPE model or the
GFPE model is applied. For a ground surface with smooth
hills, the generalized-terrain PE model (GTPE) is used. If
RAY or BEM is chosen in the source region, the model is
coupled to a PE model at the boundary of the source re-
gion (Figure 14). RAY or BEM produces a set of complex
sound pressures that is used as a starting field for PE.

Figure 14. BEM or RAY is coupled to PE by generating a start-
ing field for PE, consisting of a set of complex pressures at the
boundary of the source region.

4.4. Atmosphere

This section describes how the set of effective sound speed
profiles cm(z), given by equation (5), and corresponding
statistical weights wm (m = 1, 2, . . . ,M), are derived from
local meteorological data.

4.4.1. Effective sound speed profiles
The effective sound speed c is defined as the sum of the
adiabatic sound speed cad and the wind speed component
in the direction of sound propagation u [37]. The vertical
profiles of c, cad, and u are approximated by loglin func-
tions:

c(z) ≡ cad(z) + u(z) ≈ c0 + a ln
#
1 + z/z0

'
+ bz, (15)

cad(z) =
+
κRT (z) ≈ c0 +

1
2
κR

c0

#
T (z) − T0

'
≈ c0 + ac ln

#
1 + z/z0

'
+ bcz, (16)

u(z) = V (z) cos
#
α(z) − 180◦'

≈ au ln
#
1 + z/z0

'
+ buz, (17)

with a = ac + au, b = bc + bu. (18)

Here, z0 is the roughness length of the ground surface,
κ = cp/cv = 1.4 is the ratio of the specific heat ca-
pacities at constant pressure and constant volume, and
R = 287 J/kg/K is the specific gas constant of dry air.
Further T0 and c0 =

+
κRT0 are the temperature and the

sound speed at ground level, respectively, V (z) is the hori-
zontal wind speed, and α(z) is the angle between the wind
direction and the direction of sound propagation. The wind
direction is defined as the direction from which the wind is
blowing (0◦ for North wind, 90◦ for East wind, etc.) and
the direction of sound propagation is defined as the direc-
tion into which sound waves travel (0◦ for sound waves
travelling to the North, 90◦ for sound waves travelling to
the East, etc.).

If vertical profiles of wind speed, wind direction, and
temperature are measured (with a meteorological mast or
with a radio-acoustic sounding system, for example), the
vertical profiles of the effective sound speed can be calcu-
lated directly, and the profile coefficients a and b in equa-
tion (15) can be determined with an appropriate curve fit-
ting algorithm.
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Table I. Wind speed classes W1 to W5 and according wind
speeds V at 10 m above ground.

wind speed class V (z = 10 m)

W1 0 . . . 1 m/s
W2 1 . . . 3 m/s
W3 3 . . . 6 m/s
W4 6 . . . 10 m/s
W5 >10 m/s

Table II. Upwind/downwind classes V1 to V9 and according
wind components u at 10 m above ground in the direction of
sound propagation.

wind class u(z = 10 m)

V1 < −10 m/s upwind
V2 −10 . . . − 6 m/s
V3 −6 . . . − 3 m/s
V4 −3 . . . − 1 m/s

V5 −1 . . . + 1 m/s crosswind

V6 +1 . . . + 3 m/s downwind
V7 +3 . . . + 6 m/s
V8 +6 . . . + 10 m/s
V9 > +10 m/s

Table III. Stability classes S1 to S5.

stability class day/night, cloud cover (octas)

S1 day, 0/8 . . . 2/8
S2 day, 3/8 . . . 5/8
S3 day, 6/8 . . . 8/8
S4 night, 5/8 . . . 8/8
S5 night, 0/8 . . . 4/8

In most cases, however, vertical profiles are not directly
measured, and data are available only for a certain height
above the ground. In these cases it is necessary to generate
the profiles by assuming the validity of the surface-layer
similarity theory, which relates the vertical turbulent fluxes
of momentum and heat to three surface-layer scaling pa-
rameters: friction velocity u∗, Monin-Obukhov length L,
and temperature scale T∗. The scaling parameters are used
in empirical flux-profile relations.

If the vertical turbulent fluxes of momentum and heat
are measured directly (with 3D ultrasonic probes, for ex-
ample), the scaling parameters u∗, L and T∗ can be derived
directly. If only routine meteorological data (weather sta-
tion data) are available, u∗, L, T∗ and the surface temper-
ature T0 can be derived from Tables IV–VII, with meteo-
rological propagation classes defined by Tables I–III. The
classes depend on the following parameters:

• wind speed at 10 m above the ground, V (z = 10 m),
• wind speed component in the direction of sound propa-

gation at 10 m above the ground, u(z = 10 m),

Table IV. ‘Projected’ friction velocity u∗ cos(α − 180) in m/s for
each upwind/downwind class.

wind class u∗ cos(α − 180)

V1 −0.87
V2 −0.53
V3 −0.30
V4 −0.13
V5 ±0.00
V6 +0.13
V7 +0.30
V8 +0.53
V9 +0.87

Table V. Inverse Monin-Obukhov length 1/L in 1/m for wind
speed classes W1 to W5 and stability classes S1 to S5.

S1 S2 S3 S4 S5

W1 -0.08 -0.05 0 +0.04 +0.06
W2 -0.05 -0.02 0 +0.02 +0.04
W3 -0.02 -0.01 0 +0.01 +0.02
W4 -0.01 0 0 0 +0.01
W5 0 0 0 0 0

Table VI. Temperature scale T∗ in K for classes W1 to W5 and
stability classes S1 to S5.

S1 S2 S3 S4 S5

W1 -0.4 -0.2 0 +0.2 0.3
W2 -0.2 -0.1 0 +0.1 0.2
W3 -0.1 -0.05 0 +0.05 0.1
W4 -0.05 0 0 0 0.05
W5 0 0 0 0 0

Table VII. Surface temperature T0 in ◦C for stability classes S1
to S5.

S1 S2 S3 S4 S5

+15 +15 +15 +5 +5

• cloud cover in octas,
• time of the day (day/night).

Once the surface-layer scaling parameters u∗, L and
T∗ have been determined, the profile parameters au, bu in
equation (16) and ac, bc in equation (17) can be calcu-
lated with the help of flux-profile relations. The Businger-
Paulson profiles (integrated Businger-Dyer flux-profile re-
lations) are assumed [38, 39], but for the unstable case
(day) the non-logarithmic term is replaced by a linear
term [18]. The linearization is valid for z/L ≥ −0.5, or
z < 0.5|L| for L < 0. This approach results in the follow-
ing expressions.
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The wind component in the direction of sound propaga-
tion is given by

u(z) = au ln
#
1 + z/z0

'
+ buz, (19)

au =
u∗ cos(α − 180◦)

K
,

bu =
u∗ cos(α − 180◦)

K

1.0
L

during day,

bu =
u∗ cos(α − 180◦)

K

4.7
L

during night.

The adiabatic sound speed is given by:

cad(z) = c0 + ac ln
#
1 + z/z0

'
+ bcz, (20)

ac ≈ 1
2
κR

c0
0.74

T∗
K

,

bc ≈ 1
2
κR

c0

!T∗
K

0.74
L

+ γd

%
during day,

bc ≈ 1
2
κR

c0

!T∗
K

4.7
L

+ γd

%
during night,

with the von Karman constant K = 0.4, the dry adiabatic
vertical temperature gradient γd = −0.0097 K/m.

Finally, profiles given in equations (19) and (20) are
combined according to equation (18) to determine profile
parameters a and b of the effective sound speed.

4.4.2. Statistical weights

Each pair of profile parameters a and b describes a specific
situation of sound propagation. To minimize the number of
sound propagation calculations, the profile parameters are
aggregated into a reasonable number of classes, labelled
by index m in section 2.3. Each class is defined by inter-
vals of a and b, and is represented by a specific pair of pa-
rameters out of the intervals. Propagation calculations are
performed for the representative pairs of a and b. Statisti-
cal weights wm in section 2.3 are equal to the frequencies
of occurrence of the classes, determined on the basis of
data collected for a period of at least one year.

In references [10, 19] the effect of the number of classes
on calculated long-term average sound levels was investi-
gated. It turned out that a number of 25 classes (five inter-
vals of a times five intervals of b) ensures a determination
of long-term average sound levels with an error of at most
2 dB at 1000 m range. An example of a classification with
25 profiles is given in Tables VIII and IX.

4.4.3. Range-dependent profiles near obstacles

An obstacle such as a noise barrier has an effect on sound
waves but also on wind. Consequently, the loglin sound
speed profiles described in the previous section are ‘dis-
turbed’ in the neighbourhood of an obstacle. In general,
one may use CFD calculations to determine the wind field
around an obstacle. In references [26, 40] analytical for-
mulas are given for the range-dependent profile near a
noise screen, for a logarithmic inflow profile. The formulas
are based on CFD calculations and wind tunnel measure-
ments.

Figure 15. Range-dependent wind speed profiles near a 4 m high
noise screen, for a loglin inflow profile u(z) = ln(1+z/z0)+0.2z
perpendicular to the screen. Dimensions are normalized by the
screen height.

In reference [10] these formulas are generalized to the
case of a loglin inflow profile.

Figure 15 shows a typical example of disturbed wind
speed profiles near a 4 m high noise screen, calculated
with the formulas from reference [10] for a loglin inflow
profile u(z) = ln(1 + z/z0) + 0.2z perpendicular to the
screen. Dimensions in the figure are normalized by the
screen height. Profiles are disturbed in the region between
three screen heights upwind of the screen to twenty screen
heights downwind of the screen. Outside this region the
profiles are undisturbed.

4.4.4. Turbulence

Atmospheric turbulence has two distinct effects on sound
propagation
1. sound waves are scattered by turbulent eddies into

shadow regions,
2. phase fluctuations due to turbulent eddies cause a loss

of coherence of sound waves traveling along different
paths, in particular along different propagation planes.

The first effect is taken into account in an approximate
way, since sound levels in shadow regions are generally
low, and low levels have a minor effect on long-term aver-
age levels. An upper limit of 15 dB is applied to the excess
attenuation (not including attenuation due to air absorp-
tion; see section 2.3). More accurate values of the upper
limit for specific situations may be determined by perform-
ing sound propagation calculations for a set of random re-
alizations of the turbulent atmosphere, using appropriate
values of turbulence parameters [10, 21, 22].

The second effect is also taken into account in an ap-
proximate way: contributions from different propagation
planes are summed incoherently (section 2.3). If neces-
sary, one may use partial coherent summation to account
for the effect of atmospheric turbulence, if the required tur-
bulence parameters are known.

4.4.5. Air absorption

The effect of air absorption on sound propagation is calcu-
lated with ISO 9613-1 [23]. For a pure tone, the effect is a
reduction of a received sound pressure level by αr, where r
is the horizontal propagation distance and α is the absorp-
tion coefficient at the frequency of the tone. For broadband
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Table VIII. Example of class intervals I and representative values V of the logarithmic profile parameter a in m/s.

I −∞ < a1 ≤ −0.7 −0.7 < a2 ≤ −0.2 −0.2 < a3 ≤ 0.2 0.2 < a4 ≤ 0.7 0.7 < a5 ≤ ∞
V a1 = −1.0 a2 = −0.4 a3 = 0 a4 = 0.4 a5 = 1.0

Table IX. Example of class intervals and representative values of the linear profile parameter b in 1/m.

I −∞ < b1 ≤ −0.08 −0.08 < b2 ≤ −0.02 −0.02 < b3 ≤ 0.02 0.02 < b4 ≤ 0.08 0.08 < b5 ≤ ∞
V b1 = −0.12 b2 = −0.04 b3 = 0 b4 = 0.04 b5 = 0.12

noise 1/3-octave bands are used, and the effect of air ab-
sorption is a reduction of a 1/3-octave band level by

Aair = αr
#
1.0053255 − 0.00122622αr

'1.6
, (21)

where α is evaluated at the mid-frequency of each 3rd oc-
tave band [10].

The absorption coefficient α according to ISO 9613-1
standard is a function of temperature and relative humidity.
Average local values of these parameters are used. Values
for the periods day, evening, and night are distinguished if
possible.

4.5. Ground and obstacles

Absorbing ground surfaces and other surfaces are repre-
sented by the normalized acoustic impedance Z (normal-
ized by the impedance of air). Various empirical and the-
oretical models exist to calculate Z as a function of fre-
quency from parameters that characterize the absorbing
material, such as flow resistivity and porosity. The refer-
ence model employs four impedance models which are de-
scribed in the Appendix.

In some cases a surface is modelled as a layer of
porous material with a rigid backing. In these cases the
impedance Zlayer is calculated from the normalized char-
acteristic impedance Z of the porous material with the re-
lation

Zlayer = Z coth
# − ikd

'
, (22)

where k is the complex wave number and d is the thickness
of the porous layer.

Table X lists impedance models and parameters for var-
ious ground surfaces and absorbing surfaces. The values
of the parameters in the table are ‘default values’, which
may be replaced by more accurate values for specific cases
(obtained from measurements). The description of the dif-
ferent impedance models used is given in the Appendix
(Delany and Bazley, Hamet et al., exponential porosity and
hybrid model).

In specific cases it may be necessary to include the ef-
fect of surface roughness as an effective contribution to the
impedance of a surface. Various models exist to calculate
this contribution [10].

4.6. Barriers and hills

As described in section 4.1, the propagation methods PE,
BEM, and RAY offer various possibilities to take into ac-
count the effects of obstacles and hills. BEM and RAY
can be used for obstacles with a complex shape, but since
refraction is ignored, these models are used only in the
source region. CNPE and GFPE can be used for rectan-
gular obstacles, but in this case there are limitations with
respect to the elevation angle and the absorbing properties
of the obstacles. GTPE can be used for propagation over
smooth hills, with local slopes not exceeding about 30◦.

A case of practical interest is a (rail) road on an em-
bankment. If the embankment is not too wide, the sloping
sides of the embankment may be included in the source re-
gion, and modelled by BEM or RAY. Otherwise, PE must
be used. With CNPE or GFPE the sloping sides are ap-
proximated by a vertical step in the ground surface. If the
embankment can be approximated as a smooth hill, GTPE
can be used.

4.7. Barrier tops

A ‘barrier top’, also called ‘crowning’, is a device installed
at the top of a barrier aiming at improving the performance
of the barrier without increasing its overall height. In prin-
ciple, a barrier with a crowning can be considered as a
complex shaped obstacle. The most common tops are the
T and the cylinder [34, 35].

Sound propagation over a barrier with a ‘barrier top’
can be modelled by using BEM in the source region. Al-
ternately, one may use PE in the source region and account
for the effect of the barrier top by an analytical correction
applied to the PE results. The analytical correction is de-
veloped on the basis of numerical BEM results [41] with
a heuristic approach to account for refraction [11]. The al-
ternate approach with PE should be used if the effect of
refraction in the source region is expected to be larger than
the effect of the barrier top.

5. Validations

5.1. Validation of the reference model against in situ
measurements

The outdoor sound propagation reference model has been
validated by comparison with in situ long-term measure-
ments results [14]. Local meteorological data recorded in
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Table X. Impedance models and parameters for various ground surfaces and absorbing surfaces.

Surface/Ground type Impedance model Default parameters

concrete, (dense) asphalt, ice, water rigid surface Z = ∞
porous asphalt Hamet et al. σ = 5 kPa s/m2, Ω = 0.2, q2 = 5, d = 0.04 m

compacted soil Delany and Bazley σ = 2000 kPa s/m2, d = ∞
grassland, cultivation land Delany and Bazley σ = 200 kPa s/m2, d = ∞
forest humus exponential porosity σ = 8 kPa s/m2, α = 25/m

snow Delany and Bazley fresh/old snow: σ = 5/30 kPa s/m2,
thin/medium/thick layer: d = 0.1/0.3/1.0 m

mixed ground (asphalt/grassland) Delany and Bazley 100/67/ 50/ 33/ 0% of grass:
σ = 200/400/600/1000/∞ kPa s/m2 with d = ∞

railway ballast bed (well defined) Hamet et al. σ = 3 kPa s/m2, Ω = 0.3, q2 = 3, d = 0.4 m

railway ballast bed (unknown composition) Delany and Bazley σ = 50 kPa s/m2, d = ∞
porous concrete Hamet et al. σ = 10 kPa s/m2, Ω = 0.25, q2 = 4, d = 0.1 m

mineral wool hybrid σ = 50 kPa s/m2, Ω = 0.9, q2 = 2.5, d = 0.1 m

Table XI. Global results of validations against measurements for
two typical studied sites. M: Microphone number, dmin: Short-
est distance to source [m], hM: Microphone height [m],. LdenM:
Measured Lden [dB(A)], LdenC: Calculated Lden [dB(A)], Diff:
Difference [dB(A)].

M dmin hM LdenM LdenC Diff

Ladenburg II (highway, flat surroundings).
Measurements duration: 32 days

1 37 6 77.5 77.7 0.2
2 164 4 68.1 68.2 0.1
3 316 4 64.9 64.6 -0.3
4 558 4 60.2 60.6 0.4
5 1115 4 54.4 54.9 0.5

Unna (highway on embankment with barriers on
both sides). Measurements duration: 19 days

1 25 4 64.6 63.7 -0.9
2 150 4 62.5 61.8 -0.7
3 300 4 60.3 58.9 -1.4
4 550 4 57.8 56.2 -1.6

parallel with noise levels and traffic characteristics have
been used together with physical data as input data. The
validation of the reference model included nine measure-
ment campaigns at six locations with a large variety of
propagation and terrain conditions. Long-term Lden re-
sults are presented in Table XI for a couple of sites for
which theoretical sound predictions have been achieved
using the Parabolic Equation approach. From the compar-
isons with the measured results it appears that the agree-
ment between reference model and experimental results
ranges from fairly good in hilly terrain with the road on a
viaduct (Maximum absolute differences between the cal-
culated and the measured Lden of 3.1 dB(A)) up to ex-
cellent in flat terrain situations (Maximum absolute Lden

differences less than 0.5 dB(A)). This conclusion encom-
passes road traffic noise, railway noise and point sources
from a loudspeaker (Maximum absolute Lden differences
of 2.3 dB(A) for the latter case).

The ambition levels of accuracy defined at the start of
the Harmonoise project were: a 95%-confidence interval
of the predicted values of ±1 dB(A) for distances up to
100 m, a 95%-confidence interval of the predicted values
of ±2 dB(A) for distances up to 2000 m in flat terrain,
and a 95%-confidence interval of the predicted values of
±5 dB(A) for distances up to 2000 m in hilly terrain. For
the reference model, the boundaries of the 95%-confidence
interval are exceeded in only 2 out of the 49 cases exam-
ined. This means that in only 4% of the cases the difference
is outside the 95%-confidence interval. In other words, the
ambition for the reference model has been fulfilled.

5.2. Reference tool for the development of the Har-
monoise engineering model

The reference model has been extensively used for the de-
velopment and the validation of the engineering model
[15]. An important set of cases have been tested using
typical values for propagation distances (25 to 500 m),
ground air flow resistivity (80 to 2000 kPa s/m2), barrier
and embankment heights (0.5 to 4 m), and meteorologi-
cal loglin profiles (logarithmic profile parameter a = −0.6
to +0.6 m/s, and linear profile parameter b = −0.12 to
+0.12/m). Computations have been carried out on a wide
range of frequencies for more than 14700 different cases.

One essential aim of these tests was to check the sensi-
tivity and the continuity of the engineering model with re-
spect to input data. Attention has been paid to small varia-
tions of the terrain profile as well as low obstacle problems
and transition between single and double diffraction.
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6. Conclusions

An advanced numerical model has been developed within
the framework of the European Harmonoise project. This
so-called reference model is a collection of three families
of sound propagation methods which may be coupled to-
gether: the PE model, the straight-ray approach and the
BEM. This set of numerical codes allows to handle realis-
tic road and railway configurations with range dependent
sound speed profiles, and is able to deliver ultimately a
‘reference’ Lden value.

Work is still in progress in the frame of the European
Imagine project in order to apply this reference model to
aircraft noise as well as industrial noise. The reference
model is also currently used to study complex outdoor
sound problems such as the effect of meteorology on road
traffic noise propagation in mountainous sites.

Appendix: Impedance models

Delany and Bazley model

Delany and Bazley [42] have developed an empirical
model for fibrous absorbent materials, which is also used
for natural grounds such as grassland. The expressions for
Z and k are

Z = 1 + 0.0511
!σ

f

%0.75
+ i0.0768

!σ

f

%0.73
, (A1)

k

ω/c
= 1 + 0.0858

!σ

f

%0.70
+ i0.175

!σ

f

%0.59
. (A2)

The material is characterized by a single parameter: the
air flow resistivity σ. Other independent parameters are:
adiabatic sound speed c (in air), angular frequency ω, and
frequency f . One may note that the positive sign of the
imaginary parts in the above equations corresponds to the
choice of the harmonic time factor in sound propagation
models.

Hamet et al. model

Hamet et al. [43] have developed a theoretical model for
porous media with a rigid frame. The expressions for Z
and k are:

Z =
q

Ω
F

1/2
µ

�
κ − κ−1

Fθ

�−1/2
, (A3)

k

ω/c
= qF

1/2
µ

�
κ − κ−1

Fθ

�1/2
, (A4)

with Fµ = 1 + ifµ/f , Fθ = 1 + ifθ/f , fµ = Ωσ/(2πρq2)
and fθ = σ/(2πρNPr). Material parameters are: structure
constant q2, porosity Ω, and air flow resistivity σ. Other
quantities are: density of air ρ, adiabatic sound speed c in
air, angular frequency ω, Prandtl number NPr = 0.71, and
specific-heat ratio κ = 1.4.

Exponential porosity model

The exponential porosity model [44] yields an expression
only for Z:

Z = 0.484
!σ

f

%0.5
+ i

�
0.484

!σ

f

%0.5
+ 30

α

f

�
. (A5)

Material parameters are: flow resistivity σ and rate of
porosity decrease with depth α.

Hybrid model

A hybrid model [7] is used for absorbing materials such
as mineral wool. This model is equal to the Delany and
Bazley model at high frequency (f > f2) and the Hamet
model at low frequency (f < f1), with f1 = 0.012σ/ρ
and f2 = 0.024σ/ρ. For f1 ≤ f ≤ f2, linear interpolation
is used. If the impedance according to the model of Hamet
et al. is denoted as ZH and the impedance according to the
model of Delany and Bazley as ZDB, then the impedance
according to the hybrid model is given by:

Z =


ZH for f < f1,

f−f1
f2−f1

ZDB + f2−f
f2−f1

ZH for f1 ≤ f ≤ f2,

ZDB for f > f2.

(A6)

For the complex wavenumber an analogous relation is
used.
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